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Introduction to the problem

m Traditional meta-analysis methods have focused on combining results from
multiple independent studies, each of which has measured an effect size
associated with a single outcome of interest [1].

m During the last decade or so, meta analysis of two or more outcomes using
multivariate meta analysis models has gained considerable interest [2,3,4].

m This project was motivated by evidence synthesis in metabolomics studies.

m We explored multivariate meta analysis models in the context of metabolomics
and other high-dimensional data where we routinely have more variables than
the number of studies.
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A motivating example: metabolomics
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m Data obtained from Llambrich et al 2020 [5], exploring the association of
metabolites with lung cancer risk.
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metabolites with lung cancer risk.

m Estimates for the means and standard deviations of the treated and control groups
were available.
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m Data obtained from Llambrich et al 2020 [5], exploring the association of
metabolites with lung cancer risk.

m Estimates for the means and standard deviations of the treated and control groups
were available.

m 21 metabolites in 6 studies were available.

m Not all metabolites were present in all 6 studies, creating some missing values.
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m Widely-used

m Limitations: Weighted only by the sample sizes; Estimates for the sample
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m Other: Combining p-values not using effect size information, Using either
fixed or random based on a heterogeneity statistic, Vote counting
Counting and comparing significant vs. non-significant studies 2721
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What we will present?

m We recently published a multivariate meta-analysis model and an R package,
MetaHD for metabolomics data.

Liyanage J C, Prendergast L, Staudte R, and De Livera A M, MetaHD: a

multivariate meta-analysis model for metabolomics data, Bioinformatics,
Volume 40, Issue 7, July 2024, btae470,

https://doi.org/10.1093/bioinformatics/btae470

Full Paper
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m We recently published a multivariate meta-analysis model and an R package,
MetaHD for metabolomics data.
Liyanage J C, Prendergast L, Staudte R, and De Livera A M, MetaHD: a
multivariate meta-analysis model for metabolomics data, Bioinformatics,
Volume 40, Issue 7, July 2024, btae470,
https://doi.org/10.1093/bioinformatics/btae470

m This talks describes this model and some further empirical developments
to-date exploring a faster version of the model.
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A multivariate meta analysis model: effect sizes
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m For the 7th outcome, assume that the
population effect size 0, ;. in the kth
study, is drawn from a distribution of
population effect sizes with true mean
across the studies ¢, and variance 057.

The size of 0;277_ indicates the degree of
heterogeneity in the population effect
sizes for the ith outcome, and 0,
describes their central tendency. Let
0=10,,0,,..,0y] bea (N x1)

matrix with elements 0,.
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Study 1 Ta < m The off-diagonals of S, reflect the
L] correlation that arises when several

n Yn outcomes are measured on the same

participant within a study.

Study 2 m We assume that 7, ~ N(0,¥) where ¥

iz 2 is a N by N matrix representing

Yy 5 between-study variances and
covariances of the treatment effects.

m The off-diagonals of the between-study

4 covariance matrix U reflect the

g; correlation arising when the same

outcomes are also measured by other
studies.
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A multivariate meta analysis model: special cases
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m For estimation of the model parameters,
we incorporated a shrinkage approach
to large-scale covariance estimation.

m When the within-study (and

between-study) correlations are all zero,
the model is equivalent to several
separate univariate random-effects
models.

14/27



A multivariate meta analysis model: special cases

m For estimation of the model parameters,

Study 1 - Lity we incorporated a s_hrinkage_approach

> to large-scale covariance estimation.

m When the within-study (and
between-study) correlations are all zero,
the model is equivalent to several

) separate univariate random-effects
- — models.

Y, iy m In addition to the above, if the

between-study variances are set to zero,

the model is equivalent to several
separate univariate fixed-effects models.

Study 2
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A multivariate meta analysis model: other
considerations

m Missing effect sizes are replaced with zero and missing variances with a large
constant, such that the variable is allocated a lower weight in the meta-analysis.
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m Missing effect sizes are replaced with zero and missing variances with a large
constant, such that the variable is allocated a lower weight in the meta-analysis.

m Application of the model to even higher dimensionality is limited however, as it
becomes computationally infeasible due to memory constraints and high computation
time. For larger datasets, we therefore, implemented a divide-and-conquer strategy.

m Step 1: The model first fitted assuming zero within and between correlations
(i.e., univariate random effects model). Variables are then ranked by p-values
and organised into smaller sub-groups.

m Step 2: The multivariate model is then re-fitted (without restrictions on
correlations) within each sub-group, and the results are combined.
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m Reasonable results compared

to the combination approach.
Arginine: The combined result
no longer appears to be
mainly on the 6th study,
considering that studies 1 and
3 are in the opposite direction.
Leucine: Studies 2 and 5 no
longer outweigh 1 and 3.

No ground truth with this real
data set.

To evaluate the multivariate
meta analysis approach, we
used multiple real-datasets
that had some known
differentially-expressed
variables and simulated data.

17/27



Real data: Example Il

Mixture

.

~  Mix_Spiked

Mix

Study

e e e e

Study1
Study?
Study3
Study4
Study5
Study6
Study7
Study8
Study9
Study 10
Study 11
Study12

m These data are obtained from a

previously published designed study [7].

18/27



Real data: Example Il

m These data are obtained from a

Loar previously published designed study [7].
s44 Mixture m In this designed experiment, eight
51 ‘-.*“'; . T . Mix replicates of a biological metabolite
= * Mix_Spiked mixture (MIX) and another eight
As Study replicates of the same mixture with
r Study1 some metabolites in increased amounts
o I s (MIX-SPIKED) had been run at three
& N g{ﬂg;g different temperature settings (7, 15,
FS on’t ¢ Swdys and 25 °C) on four different GC-MS
- PO *  Study7 . . . :
SR IR M + Study8 devices in three different locations,
v = ¢ + Study9 . .
2 St Study10 leading to 12 separate studies.
% 00 Study11
*e * Study12
.t
5 0 5
PC1

18/27



Real data: Example Il
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As Study replicates of the same mixture with
F Study1 some metabolites in increased amounts
o I s (MIX-SPIKED) had been run at three
& N g{ﬂg;g different temperature settings (7, 15,
& en’t o g:ugyg and 25 °C) on four different GC-MS
- o ¢ Study L . :
gt RS * Study8 devices in three different locations,
2 . AR 3{33530 leading to 12 separate studies.
L - g:ﬁgﬂ; m 33 metabolites were detected across all
- ¢ studies, in 185 samples. 11 metabolites
.t
| | were present in MIX-SPIKED in 3-fold
B POC1 ° amounts, one was present in a 5-fold

amount compared to MIX, and the
other metabolites remained unchanged.
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Real data: Example Il cont

Table 1: RMSE values are on log scale. Values are in hundreds and the smallest value in
each fold-change category is shown in boldface type.

Method Non-changing 3-fold 5-fold
fastMetaHD 6.8 45.2 4.6
Univariate fixed 13.8 50.3 17.7
Univariate fixed or random 10.2 47.2 18.6
Univariate random 10.2 47.2 18.6

Fold change 10.2 48.6 19.7
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Mouse proteomic data: Example 11l

m Genetically identical cohorts of mice were subjected to Chow or High-Fat Diet
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Mouse proteomic data: Example 11l

m Genetically identical cohorts of mice were subjected to Chow or High-Fat Diet
[13]
m There are 366 peptides measured from 233 samples across 4 mass

spectrometry batches (‘studies’)

m We normalised the data within each batch using RUV-2 [7] and obtained
summary statistics for each metabolite within each batch (means, variances,
p-values).

m The top 10 differentially-expressed peptides identified in a published analysis
[13] that included all data was used to calculate the proportion of correctly
identified peptides for each method.
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Mouse proteomic data: Example Il cont

Figure 1: Bar plots showing the proportion of correctly identified top 10 DE peptides across different
meta-analysis methods.
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Simulation study

m Population effect
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Concluding remarks

m Multivariate meta-analysis model exploits the correlation structure among
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m Multivariate meta-analysis model exploits the correlation structure among
outcomes to improve estimation, with fixed and random effects models being
special cases.

m The gain in RMSE increased as the within-study correlation increased and also
when good approximations to the covariance matrices were available.

m Another advantage is that this multivariate meta analysis approach can
accommodate missing values.

m Multivariate meta-analysis models (and fixed and random effects models)
cannot be used with limited data (e.g., when only the p-values or only the
effect sizes are available). In such cases combining p-values and/or fold
changes may be the only approaches available.
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